(6xy^3+cos(y))dx+(2kx^2y^2-xsin(y))dy=0

Simple and best practice solution for (6xy^3+cos(y))dx+(2kx^2y^2-xsin(y))dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6xy^3+cos(y))dx+(2kx^2y^2-xsin(y))dy=0 equation:


Simplifying
(6xy3 + cos(y)) * dx + (2kx2y2 + -1xsin(y)) * dy = 0

Multiply cos * y
(6xy3 + cosy) * dx + (2kx2y2 + -1xsin(y)) * dy = 0

Reorder the terms:
(cosy + 6xy3) * dx + (2kx2y2 + -1xsin(y)) * dy = 0

Reorder the terms for easier multiplication:
dx(cosy + 6xy3) + (2kx2y2 + -1xsin(y)) * dy = 0
(cosy * dx + 6xy3 * dx) + (2kx2y2 + -1xsin(y)) * dy = 0
(cdosxy + 6dx2y3) + (2kx2y2 + -1xsin(y)) * dy = 0

Multiply insx * y
cdosxy + 6dx2y3 + (2kx2y2 + -1insxy) * dy = 0

Reorder the terms:
cdosxy + 6dx2y3 + (-1insxy + 2kx2y2) * dy = 0

Reorder the terms for easier multiplication:
cdosxy + 6dx2y3 + dy(-1insxy + 2kx2y2) = 0
cdosxy + 6dx2y3 + (-1insxy * dy + 2kx2y2 * dy) = 0
cdosxy + 6dx2y3 + (-1dinsxy2 + 2dkx2y3) = 0

Reorder the terms:
cdosxy + -1dinsxy2 + 2dkx2y3 + 6dx2y3 = 0

Solving
cdosxy + -1dinsxy2 + 2dkx2y3 + 6dx2y3 = 0

Solving for variable 'c'.

Move all terms containing c to the left, all other terms to the right.

Add 'dinsxy2' to each side of the equation.
cdosxy + -1dinsxy2 + 2dkx2y3 + dinsxy2 + 6dx2y3 = 0 + dinsxy2

Reorder the terms:
cdosxy + -1dinsxy2 + dinsxy2 + 2dkx2y3 + 6dx2y3 = 0 + dinsxy2

Combine like terms: -1dinsxy2 + dinsxy2 = 0
cdosxy + 0 + 2dkx2y3 + 6dx2y3 = 0 + dinsxy2
cdosxy + 2dkx2y3 + 6dx2y3 = 0 + dinsxy2
Remove the zero:
cdosxy + 2dkx2y3 + 6dx2y3 = dinsxy2

Add '-2dkx2y3' to each side of the equation.
cdosxy + 2dkx2y3 + -2dkx2y3 + 6dx2y3 = dinsxy2 + -2dkx2y3

Combine like terms: 2dkx2y3 + -2dkx2y3 = 0
cdosxy + 0 + 6dx2y3 = dinsxy2 + -2dkx2y3
cdosxy + 6dx2y3 = dinsxy2 + -2dkx2y3

Add '-6dx2y3' to each side of the equation.
cdosxy + 6dx2y3 + -6dx2y3 = dinsxy2 + -2dkx2y3 + -6dx2y3

Combine like terms: 6dx2y3 + -6dx2y3 = 0
cdosxy + 0 = dinsxy2 + -2dkx2y3 + -6dx2y3
cdosxy = dinsxy2 + -2dkx2y3 + -6dx2y3

Divide each side by 'dosxy'.
c = ino-1y + -2ko-1s-1xy2 + -6o-1s-1xy2

Simplifying
c = ino-1y + -2ko-1s-1xy2 + -6o-1s-1xy2

See similar equations:

| 21=2x+13 | | 5t(t+1)=20 | | n+13=x | | 3x-3=x+4 | | -2(v-8)=4v+4 | | n+13= | | 44=2x-6 | | 4(2n-1)=3(4n+8) | | 5+3(n+2)=n-5 | | y=C(x+3)+1 | | 4(n+3)=60 | | b=mf | | x-7=10*5 | | (4a-5)(5a+4)= | | 3x-4=x+30 | | -3x+3=8-(3x+5) | | -3/8+8= | | 9x+4=6(x-4)+4 | | (x-4)+7=2x-14 | | x=-4.4 | | 0=-16x^2+18x+2 | | 2m+5=10solve | | z^2+10z+25= | | b^2-b+6=0 | | 115+x=204 | | 4x-8=-2(x+3) | | 4k(k+14)=14 | | 204-x=115 | | x=-1300(4)+10400 | | 5(480-y)=2400 | | 6(400-y)=2400 | | 4x^3-6x^2-36=0 |

Equations solver categories